首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   4篇
  2020年   2篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   6篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1980年   2篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有78条查询结果,搜索用时 78 毫秒
11.
A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin.  相似文献   
12.
13.

Background

All viruses in the family Bunyaviridae possess a tripartite genome, consisting of a small, a medium, and a large RNA segment. Bunyaviruses therefore possess considerable evolutionary potential, attributable to both intramolecular changes and to genome segment reassortment. Hantaviruses (family Bunyaviridae, genus Hantavirus) are known to cause human hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome. The primary reservoir host of Sin Nombre virus is the deer mouse (Peromyscus maniculatus), which is widely distributed in North America. We investigated the prevalence of intramolecular changes and of genomic reassortment among Sin Nombre viruses detected in deer mice in three western states.

Methods

Portions of the Sin Nombre virus small (S) and medium (M) RNA segments were amplified by RT-PCR from kidney, lung, liver and spleen of seropositive peromyscine rodents, principally deer mice, collected in Colorado, New Mexico and Montana from 1995 to 2007. Both a 142 nucleotide (nt) amplicon of the M segment, encoding a portion of the G2 transmembrane glycoprotein, and a 751 nt amplicon of the S segment, encoding part of the nucleocapsid protein, were cloned and sequenced from 19 deer mice and from one brush mouse (P. boylii), S RNA but not M RNA from one deer mouse, and M RNA but not S RNA from another deer mouse.

Results

Two of 20 viruses were found to be reassortants. Within virus sequences from different rodents, the average rate of synonymous substitutions among all pair-wise comparisons (πs) was 0.378 in the M segment and 0.312 in the S segment sequences. The replacement substitution rate (πa) was 7.0 × 10-4 in the M segment and 17.3 × 10-4 in the S segment sequences. The low πa relative to πs suggests strong purifying selection and this was confirmed by a Fu and Li analysis. The absolute rate of molecular evolution of the M segment was 6.76 × 10-3 substitutions/site/year. The absolute age of the M segment tree was estimated to be 37 years. In the S segment the rate of molecular evolution was 1.93 × 10-3 substitutions/site/year and the absolute age of the tree was 106 years. Assuming that mice were infected with a single Sin Nombre virus genotype, phylogenetic analyses revealed that 10% (2/20) of viruses were reassortants, similar to the 14% (6/43) found in a previous report.

Conclusion

Age estimates from both segments suggest that Sin Nombre virus has evolved within the past 37–106 years. The rates of evolutionary changes reported here suggest that Sin Nombre virus M and S segment reassortment occurs frequently in nature.  相似文献   
14.

Background  

Gene selection is an important step when building predictors of disease state based on gene expression data. Gene selection generally improves performance and identifies a relevant subset of genes. Many univariate and multivariate gene selection approaches have been proposed. Frequently the claim is made that genes are co-regulated (due to pathway dependencies) and that multivariate approaches are therefore per definition more desirable than univariate selection approaches. Based on the published performances of all these approaches a fair comparison of the available results can not be made. This mainly stems from two factors. First, the results are often biased, since the validation set is in one way or another involved in training the predictor, resulting in optimistically biased performance estimates. Second, the published results are often based on a small number of relatively simple datasets. Consequently no generally applicable conclusions can be drawn.  相似文献   
15.
Abstract.— Maternally transmitted bacteria that kill male hosts early in their development are found in many insects. These parasites typically infect 1–30% of wild females, but in a few species of insects, prevalences exceed 95%. We investigated one such case in the butterfly Acraea encedon , which is infected with a male-killing Wolbachia bacterium. We measured three key parameters that affect the prevalence of the parasite: transmission efficiency, rate of survival of infected males, and the direct cost of infection. We observed that all wild females transmit the bacterium to all their offspring and that all infected males die in wild populations. We were unable to detect any physiological cost to infection in lab culture. These observations explain the high prevalence of the A. encedon male killer, as theory predicts that under these conditions the parasite will spread to fixation. This will occur provided the death of males provides some benefit to the surviving infected females. The problem therefore becomes why the bacterium has not reached fixation and driven the butterfly extinct due to the shortage of males. We therefore investigated whether males choose to mate with uninfected rather than infected females, as this would prevent the bacterium from reaching fixation. We tested this hypothesis in the "lekking swarms" of virgin females found in the most female-biased populations, and were unable to detect any evidence of mate choice. In conclusion, this male killer has spread to high prevalence because it has a high transmission efficiency and low cost, but the factors maintaining uninfected females in the population remain unknown.  相似文献   
16.
To provide a common currency for model comparison, validation and manipulation, we suggest and describe the use of impulse response functions, a concept well-developed in other fields, but only partially developed for use in terrestrial carbon cycle modelling. In this paper, we describe the derivation of impulse response functions, and then examine (i) the dynamics of a simple five-box biosphere carbon model; (ii) the dynamics of the CASA biosphere model, a spatially explicit NPP and soil carbon biogeochemistry model; and (iii) various diagnostics of the two models, including the latitudinal distribution of mean age, mean residence time and turnover time. We also (i) deconvolve the past history of terrestrial NPP from an estimate of past carbon sequestration using a derived impulse response function to test the performance of impulse response functions during periods of historical climate change; (ii) convolve impulse response functions from both the simple five-box model and the CASA model against a historical record of atmospheric δ13C to estimate the size of the terrestrial 13C isotopic disequilibrium; and (iii) convolve the same impulse response functions against a historical record of atmospheric 14C to estimate the 14C content and isotopic disequilibrium of the terrestrial biosphere at the 1° × 1° scale. Given their utility in model comparison, and the fact that they facilitate a number of numerical calculations that are difficult to perform with the complex carbon turnover models from which they are derived, we strongly urge the inclusion of impulse response functions as a diagnostic of the perturbation response of terrestrial carbon cycle models.  相似文献   
17.
Dominance of the wild-type allele over spontaneous null mutations, such as deletions, can be explained in terms of the effects of changes in enzyme dose on the flux of metabolic pathways. If ever increasing levels of enzyme activity have ever decreasing effects on the flux of the biochemical pathway, then halving of dosage will always have a lesser effect on flux than half the effect of complete removal of gene activity. Furthermore, if gene expression rates are high, then halving of dose can have a negligible effect on flux and dominance will be strong. Given that strong dominance appears to be common, this leaves open the issue of why enzyme activity levels are so high that a halving of expression rates is of minimal effect. Why produce so much surplus enzyme? One explanation, suggested by Haldane, is that selection favoured high expression levels as a defence against mutation. We model this scenario formally and show that protection from mutation is an extremely weak force determining expression levels. The selective coefficients are only of the order of the mutation rate. However, if we suppose a linear mapping of flux with fitness and a monotonic cost to increased gene expression, it follows simply that here exists an optimal level of gene expression. By contrast to the mutational model, doubling of gene expression rates when the system is distant from the optimum is associated with extremely high selective coefficients (orders of magnitude higher than the mutation rate). When the cost of gene expression is slight the optimal rate of expression is such that strong dominance will follow.  相似文献   
18.
In lekking species, intense directional selection is applied to aspects of the male genotype by female choice. Under conventional quantitative genetics theory, the expectation is that this will lead to a rapid loss in additive genetic variance for the trait in question. However, despite female choice, male variation is maintained and hence it pays females to continue choosing. This has been termed the ''paradox of the lek''. Here we present a theoretical analysis of a putative sex-role-reversed lek in the butterfly Acraea encedon. Sex-role reversal appears to have come about because of infection with a male-killing Wolbachia. The bacterium is highly prevalent in some populations, such that there is a dearth of males. Receptive females form dense aggregations, and it has been suggested that males preferentially select females uninfected with the bacterium. As with more conventional systems, this presents a theoretical problem exactly analogous to the lek paradox, namely what maintains female variation and hence why do males continue to choose? We model the evolution of a male choice gene that allows discrimination between infected and uninfected females, and show that the stable maintenance of both female variation and male choice is likely, so long as males make mistakes when discriminating between females. Furthermore, our model allows the maintenance, in a panmictic population, of a male killer that is perfectly transmitted. This is the first model to allow this result, and may explain the long-term persistence of a male killer in Hypolimnas bolina.  相似文献   
19.

Background  

Cerebellar granule cell precursors are specifically generated within the hindbrain segment, rhombomere 1, which is bounded rostrally by the midbrain/hindbrain isthmus and caudally by the boundary of the Hoxa2 expression domain. While graded signals from the isthmus have a demonstrable patterning role within this region, the significance of segmental identity for neuronal specification within rhombomere 1 is unexplored. We examined the response of granule cell precursors to the overexpression of Hoxa2, which normally determines patterns of development specific to the hindbrain. How much does the development of the cerebellum, a midbrain/hindbrain structure, reflect its neuromeric origin as a hindbrain segment?  相似文献   
20.
Simulations by global terrestrial biogeochemical models (TBMs) consistently underestimate the concentration of atmospheric carbon dioxide (CO2 at high latitude monitoring stations during the non-growing season. We hypothesized that heterotrophic respiration is underestimated during the nongrowing season primarily because TBMs do not generally consider the insulative effects of snowpack on soil temperature. To evaluate this hypothesis, we compared the performance of baseline and modified versions of three TBMs in simulating the seasonal cycle of atmospheric CO2 at high latitude CO2 monitoring stations; the modified version maintained soil temperature at 0 °C when modeled snowpack was present. The three TBMs include the Carnegie-Ames-Stanford Approach (CASA), Century, and the Terrestrial Ecosystem Model (TEM). In comparison with the baseline simulation of each model, the snowpack simulations caused higher releases of CO2 between November and March and greater uptake of CO2 between June and August for latitudes north of 30° N. We coupled the monthly estimates of CO2 exchange, the seasonal carbon dioxide flux fields generated by the HAMOCC3 seasonal ocean carbon cycle model, and fossil fuel source fields derived from standard sources to the three-dimensional atmospheric transport model TM2 forced by observed winds to simulate the seasonal cycle of atmospheric CO2 at each of seven high latitude monitoring stations. In comparison to the CO2 concentrations simulated with the baseline fluxes of each TBM, concentrations simulated using the snowpack fluxes are generally in better agreement with observed concentrations between August and March at each of the monitoring stations. Thus, representation of the insulative effects of snowpack in TBMs generally improves simulation of atmospheric CO2 concentrations in high latitudes during both the late growing season and nongrowing season. These simulations highlight the global importance of biogeochemical processes during the nongrowing season in estimating carbon balance of ecosystems in northern high and temperate latitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号